
# **ANTI CORONAVIRUS SOLUTION**

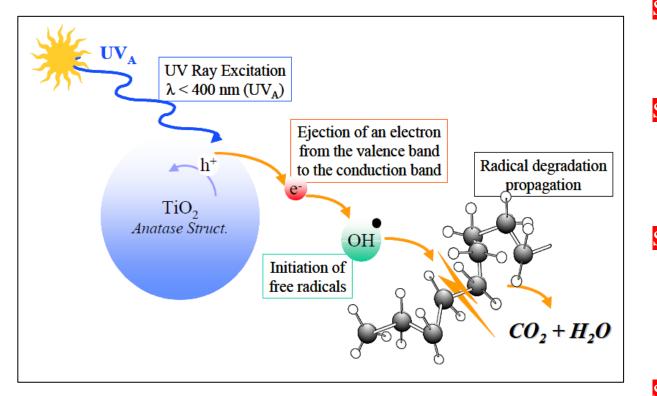
# "AIRION", both of SPACE STERILIZER & OXYGEN GENERATOR



Europe's second covid-19 wave is here but is it worse than the first. What would be your solution to protect your family and customers?

Protect the health of your family and customers with the AIRION which is a safe space sterilizer that sterilizes every room.

# Technical description for questions (UV-Photocatalysis)

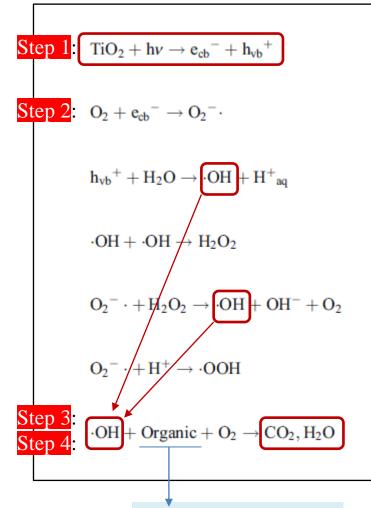

# **Summary : Disinfection of viruses by photocatalysts**



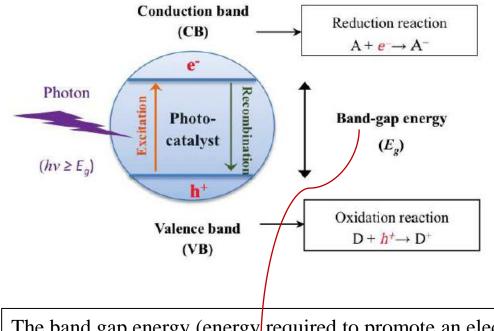


The Ultraviolet radiation lighting on the TiO<sub>2</sub> Photocatalysis filter adsorbs the harmful substance and oxidize them  $\rightarrow$  Remove over 20,000 types of chemical impurities and biological noxious particles






- Step1 : Exposure to UV causes TiO<sub>2</sub> to release electrons (e-) and positively charged holes (h+).
- Step 2: The electrons and positive holes cause generation of super oxide  $(O_2-)$  and hydroxy radicals (·OH) from water and air.
- Step 3: These radicals may induce the conversion of present organic compounds, setting of a chainreaction of radical formation and oxidation.
- Step 4: If total oxidation takes place, the end-products are carbon dioxide  $(CO_2)$  and water  $(H_2O)$ .


## **Photocatalytic mechanism(2)**



4



Organisms including bacteria, including endospores, fungi, algae, protozoa and viruses



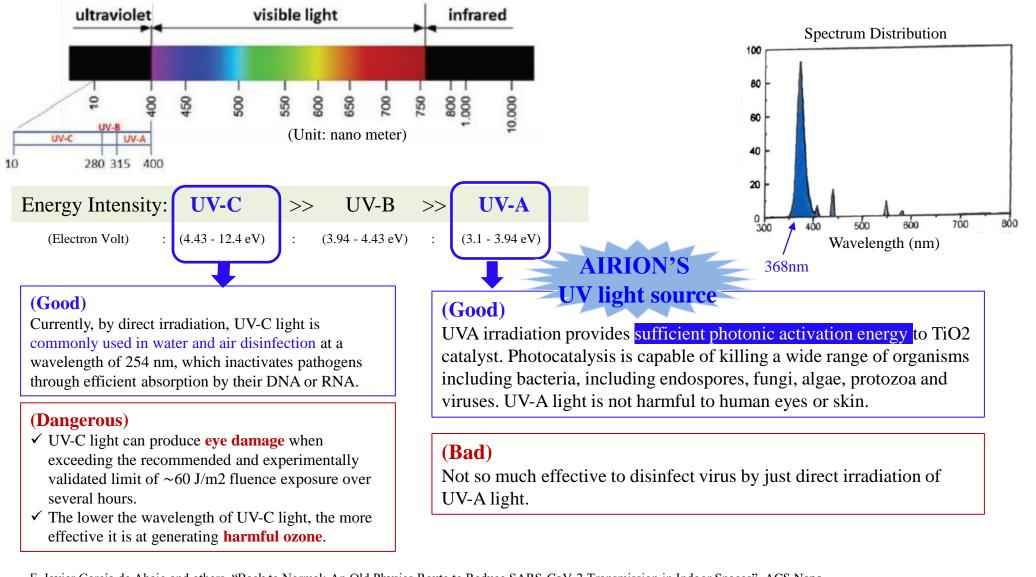
The band gap energy (energy required to promote an electron) of  $TiO_2$  anatase is approx. <u>3.2 eV</u>, which effectively means that photocatalysis can be activated by photons with a wavelength of below approximately 385 nm (i.e. UVA).

Howard A. Foster & Iram B. Ditta & Sajnu Varghese & Alex Steele, "Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity", Appl Microbiol Biotechnol (2011) 90:1847–1868, DOI 10.1007/s00253-011-3213-7



# What is an Hydroxyl radical (OH radical, OH•) ?

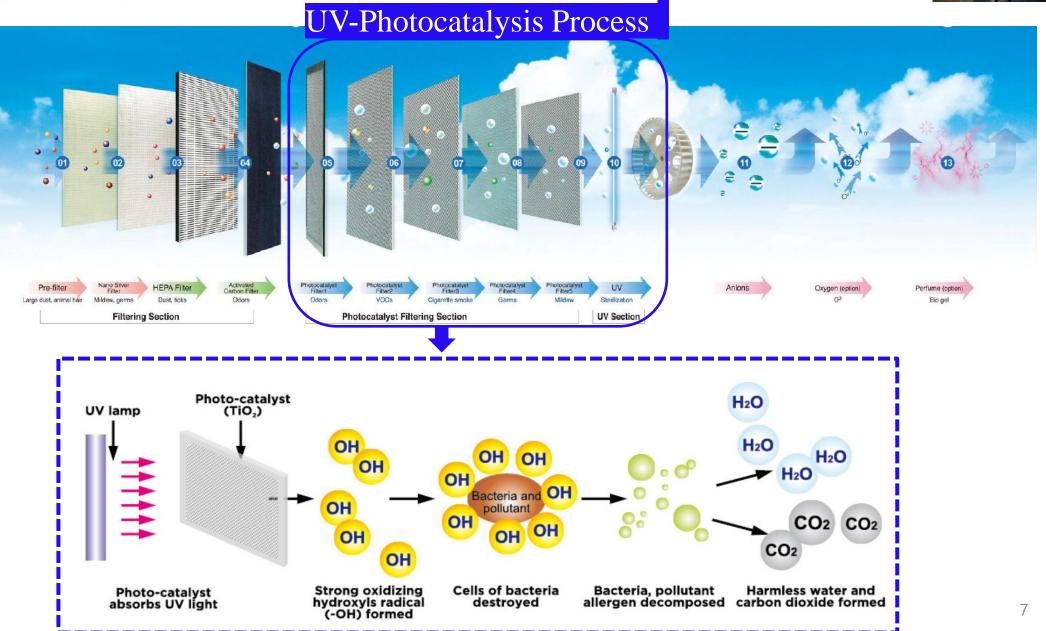
- Hydroxyl radicals are highly reactive species that attack most of the organic molecules. They are highly oxidizing in nature which is attributed to their oxidation potential.
- In addition, owing to their nonselective nature, many susceptible organic molecules can easily be removed or degraded using hydroxyl radical (e.g., acids, alcohols, aldehyde, aromatics, amines, ethers, ketone, etc.).


| Species                                            | Oxidation Potential (V) |  |
|----------------------------------------------------|-------------------------|--|
| Fluorine (F <sub>2</sub> )                         | -3.03                   |  |
| Hydroxyl radical (OH •)                            | -2.80                   |  |
| Atomic oxygen (O <sub>2</sub> )                    | -2.42                   |  |
| Ozone (O <sub>3</sub> )                            | -2.07                   |  |
| Hydrogen peroxide (H <sub>2</sub> O <sub>2</sub> ) | -1.78                   |  |
| Perhydroxyl radical (HO <sub>2</sub> •)            | -1.70                   |  |
| Permanganate (MnO <sub>4</sub> -)                  | -1.68                   |  |
| Hypobromous acid (HOBr)                            | -1.59                   |  |
| Chlorine dioxide (CIO <sub>2</sub> )               | -1.57                   |  |
| Hypochlorous acid (HOCI)                           | -1.49                   |  |
| Hypoiodous acid (HOI)                              | -1.45                   |  |
| Chlorine (Cl <sub>2</sub> )                        | -1.36                   |  |
| Bromine (Br <sub>2</sub> )                         | -1.09                   |  |
| lodine (l <sub>2</sub> )                           | -0.54                   |  |
| Iodine (I <sub>2</sub> )                           | -0.54                   |  |

OH radical has the most powerful oxidation power in nature except for fluorine. OH radical is more powerful than Ozone, Hydrogen peroxide and  $Cl_2$ , that are well-known as the oxidation materials, in terms of oxidation power.

#### <Oxidation Potentials od Various Chemical Species>

# **UV Light**






F. Javier García de Abajo and others, "Back to Normal: An Old Physics Route to Reduce SARS-CoV-2 Transmission in Indoor Spaces", ACS Nano, https://dx.doi.org/10.1021/acsnano.0c04596

#### **UV-Photocatalysis Process in Air Sterilizer**







# **UV-Photocatalytic effects on by viruses**

|                    | Paper title                                                                                                                                 |  |  |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Scientific Paper 1 | Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity                                        |  |  |  |
| Scientific Paper 2 | Decomposition of Organic Chemicals in the Air and Inactivation of Aerosol-Associated Influenza Infectivity by Photocatalysis                |  |  |  |
| Scientific Paper 3 | Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: Can we win against pathogenic viruses?  |  |  |  |
| Scientific Paper 4 | Inactivation of airborne viruses using vacuum ultraviolet photocatalysis for a flow-through indoor air purifier with short irradiation time |  |  |  |



Howard A. Foster & Iram B. Ditta & Sajnu Varghese & Alex Steele, "Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity", Appl Microbiol Biotechnol (2011) 90:1847–1868, DOI 10.1007/s00253-011-3213-7

#### The test results for microorganisms to be killed by Photocatalytic disinfection

| Organisms                 | Detailed organisms names                                                                                                                 | Results (References)                            |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Gram-negative bacteria    | <ul> <li>Escherichia coli</li> <li>Acinetobacter</li> <li>Coliforms</li> <li>Others</li> </ul>                                           | Table 2<br>Table 3                              |
| Gram-positive bacteria    | <ul> <li>Actinobacillus<br/>actinomycetemcomitans</li> <li>Bacillus cereus</li> <li>Clavibacter micheganensis</li> <li>Others</li> </ul> | Table 4                                         |
| Fungi, algae and protozoa | <ul> <li>Aspergillus niger AS3315</li> <li>Amphidinium corterae</li> <li>Acanthamoeba castellanii</li> <li>Others</li> </ul>             | Table 5 (Fungi)<br>Table 6 (Algae and protozoa) |
| Viruses                   | <ul> <li>Influenza A/H1N1</li> <li>Norovirus</li> <li>SARS coronavirus</li> <li>Others</li> </ul>                                        | Table 7                                         |
| Bacterial toxins          | <ul> <li>Brevetoxins</li> <li>Cylindrospermopsin</li> <li>Lipopolysaccharide endotoxin</li> <li>Others</li> </ul>                        | Table 8                                         |



Howard A. Foster & Iram B. Ditta & Sajnu Varghese & Alex Steele, "Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity", Appl Microbiol Biotechnol (2011) 90:1847–1868, DOI 10.1007/s00253-011-3213-7

## Viruses shown to be killed by photocatalytic disinfection

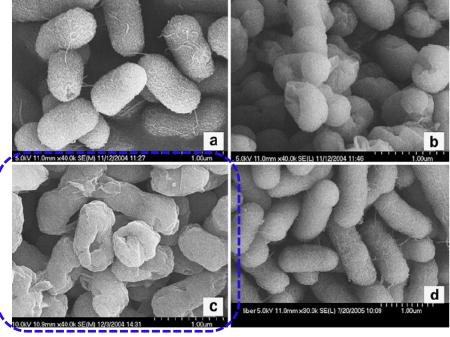
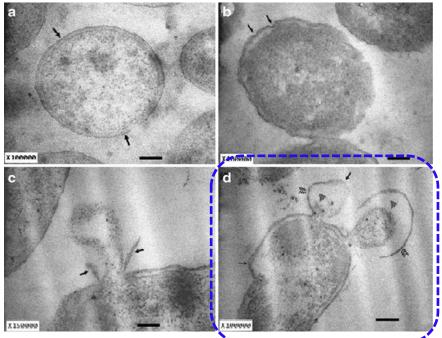

| Host                   | Virus                                   | Reference                                                                                                                                         |
|------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Bacteroides fragilis   | Not specified                           | Armon et al. (1998)                                                                                                                               |
| Birds                  | Influenza (avian) A/H5N2                | Guillard et al. (2008)                                                                                                                            |
| E. coli                | Coliphage                               | Guimarães and Barretto (2003)                                                                                                                     |
| E. coli                | fr                                      | Gerrity et al. (2008)                                                                                                                             |
| E. coli                | T4                                      | Ditta et al. (2008), Sheel et al. (2008)                                                                                                          |
| E. coli                | λ vir                                   | Yu et al. (2008)                                                                                                                                  |
| E. coli                | λNM1149                                 | Belhácová et al. (1999)                                                                                                                           |
| E. coli                | φX174                                   | Gerrity et al. (2008)                                                                                                                             |
| E. coli                | MS2                                     | Sjogren and Sierka (1994), Greist et al. (2002), Cho et al. (2004, 2005),<br>Sato and Taya (2006a, b), Vohra et al. (2006), Gerrity et al. (2008) |
| E. coli                | Qβ                                      | Lee et al. (1997), Otaki et al. (2000)                                                                                                            |
| Human                  | Hepatitis B virus surface antigen HBsAg | Zan et al. (2007)                                                                                                                                 |
| Human                  | Influenza A/H1N1                        | Lin et al. (2006)                                                                                                                                 |
| Human                  | Influenza A/H3N2                        | Kozlova et al. (2010)                                                                                                                             |
| Human                  | Norovirus                               | Kato et al. (2005)                                                                                                                                |
| Human                  | Poliovirus type 1 (ATCC VFR-192)        | Watts et al. (1995)                                                                                                                               |
| Human                  | SARS coronavirus                        | Han et al. (2004)                                                                                                                                 |
| Human                  | Vaccinia                                | <u>Kozlova et al. (2010)</u>                                                                                                                      |
| Lactobacillus casei    | PL-1                                    | Kakita et al. (1997, 20000, Kashige et al. (2001)                                                                                                 |
| Salmonella typhimurium | PRD1                                    | Gerrity et al. (2008)                                                                                                                             |

Table 7. Viruses shown to be killed by photocatalytic disinfection

### Scientific Paper 1 (UV-Photocatalytic effects on microorganisms(3))




Howard A. Foster & Iram B. Ditta & Sajnu Varghese & Alex Steele, "Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity", Appl Microbiol Biotechnol (2011) 90:1847–1868, DOI 10.1007/s00253-011-3213-7



- Fig. 2. Scanning electron micrographs of photocatalytically treated E. coli.
- (a) Untreated cells.(b) & (c) Cells after 240 min.(d) Cells after 30 min.

 $\approx$  Catalyst TiO<sub>2</sub> thin film.



- Fig. 3. Transmission electron micrographs of photocatalytically treated P. aeruginosa.
- (a) Untreated cells transverse section showing normal thickness and shape cell wall (arrows).
- (b) (d) Cells after 240 min treatment showing abnormal wavy cell wall (arrows)
- % (b) Cytoplasmic material escaping from the cell with damaged cell wall(c) and (d) Cell showing two "bubbles" of cellular material with cell wall

#### % Catalyst TiO<sub>2</sub> thin film.



Tohru Daikoku, and others, "Decomposition of Organic Chemicals in the Air and Inactivation of Aerosol-Associated Influenza Infectivity by Photocatalysis", Aerosol and Air Quality Research, 15: 1469–1484, 2015

#### The test result for infectivity of influenza virus under Photocatalytic disinfection

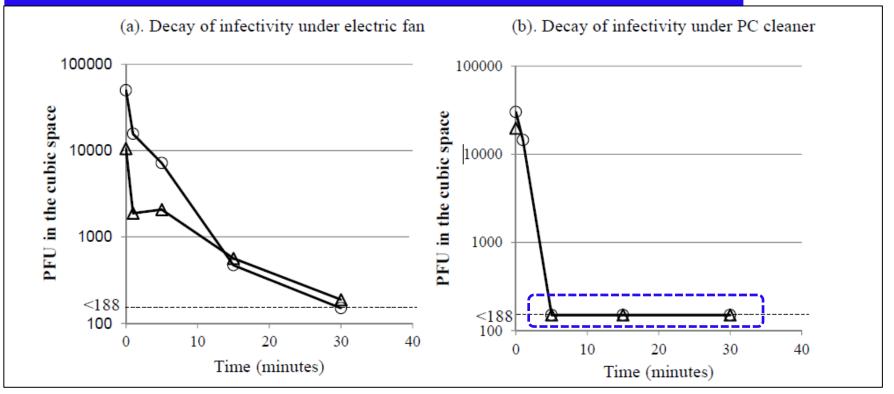



Fig. 4. Stability and decay of aerosol-associated infectivity of influenza virus in the closed space (a) and its inactivation by the photocatalytic air cleaner (b).

X Decay of infectivity was determined under PC cleaner with and without a UV-A black light.
The aerosol-associated infectivity was quickly inactivated and was undetectable within 5 min by photocatalysis with TiO2 irradiated by UV-A black light (Fig. 4(b)), while 2,072 and 7,159 PFU were detected at 5 min under an electric fan without black light (Fig. 4(a)).
X PFU = plaque forming unit

#### Scientific Paper 2 (UV-Photocatalytic effects on influenza virus(2))



Tohru Daikoku, and others, "Decomposition of Organic Chemicals in the Air and Inactivation of Aerosol-Associated Influenza Infectivity by Photocatalysis", Aerosol and Air Quality Research, 15: 1469–1484, 2015

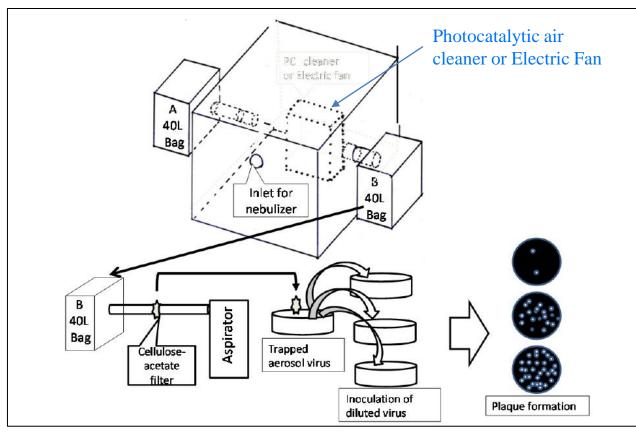



Fig. 2. Diagram of the system to assay aerosol-associated infectivity of influenza virus.

 $\times$  Aerosol-associated influenza virus was injected by a nebulizer into a 91  $\times$  91  $\times$  91-cm cubic space (754 Liters (L)), and a 40-L volume of air was slowly blown from bag A to bag B.



Aziz Habibi-Yangjeh, and others, "Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: Can we win against pathogenic viruses?", Journal of Colloid and Interface Science 580 (2020) 503-514

## Summary of utilized photocatalysts for various viral disinfection

| Photocatalyst Virus Op |                       | Operational condition     |                                    | Light source            | Disinfection efficiency           | Type of<br>virus | Ref. |
|------------------------|-----------------------|---------------------------|------------------------------------|-------------------------|-----------------------------------|------------------|------|
|                        |                       | Catalystloading<br>(mg/L) | Virus level<br>(PFU*/mL)           |                         |                                   |                  |      |
| TiO <sub>2</sub>       | Phage MS2             | 1000                      | $6 	imes 10^4$                     | UV                      | 2.8-log in 65 min                 | waterborne       | [41] |
| TiO <sub>2</sub>       | Phage MS2             | 1000                      | $6 \times 10^{5}$                  | 18 W BLB* lamp          | 1.8-log in 180 min                | waterborne       | [61] |
| TiO <sub>2</sub>       | Bacteriophage<br>Qβ   | 1000                      | $1 \times 10^{6}$                  | UV lamp                 | 3.5-log in 2 min                  | waterborne       | [64] |
| TiO <sub>2</sub>       | Phage f2              | 1000                      | 10 <sup>10</sup> -10 <sup>11</sup> | 6 W black light<br>lamp | 6-log in 15 min                   | waterborne       | [78] |
| TiO <sub>2</sub>       | Influenza virus       | No data                   | $4.0 \times 10^{8}$                | 1 mW black light        | Eliminated in 5 min               | airborne         | [83] |
| TiO <sub>2</sub>       | Influenza virus       | No data                   | 0.0 or<br>0.1 mg ml <sup>-1</sup>  | 20 W black light        | 4-log in a short irradiation time | airborne         | [84] |
| TiO <sub>2</sub>       | H1N1                  | No data                   | No data                            | UV-LED lamp             | Eliminated in 7 min               | airborne         | [85] |
| TiO <sub>2</sub>       | MNV-1                 | No data                   | No data                            | UV lamp                 | 3.2-log in 10 min                 | foodborne        | [91] |
| TiO <sub>2</sub>       | MNV-1                 | No data                   | No data                            | UV lamp                 | >5.5-log in 15 min                | foodborne        | [95] |
| TiO <sub>2</sub>       | MS-2<br>bacteriophage | No data                   | $2 \times 10^5$                    | 4 W BLB lamp            | 2-log in 109 min                  | waterborne       | [96] |
| TiO <sub>2</sub>       | Phage f2              | 100                       | >20                                | 4 W UV-Clamp            | 5–6-log in 160 min                | waterborne       | [97] |
| TiO <sub>2</sub>       | Murine<br>norovirus   | 10                        | $1\times 10^8$                     | UV lamp                 | 3.3-log in 24 h                   | waterborne       | [98] |

\_\_\_\_\_\_

Table 1. Summary of utilized photocatalysts for various viral disinfection

ight : UV-A light ⊗

[\*]: PFU = plaque forming unit; BLB = black-light-blue



Jeonghyun Kim and Jaesung Jang, "Inactivation of airborne viruses using vacuum ultraviolet photocatalysis for a flow-through indoor air purifier with short irradiation time", AEROSOL SCIENCE AND TECHNOLOGY 2018, VOL. 52, NO. 5, 557–566

### Summary of studies on UV photocatalytic oxidation systems for disinfecting bioaerosols

| Light<br>source                        | Target bioaerosols                                                                                                      | Photoreactors                                                                  | Irradiation time<br>(flow rate) | Disinfection<br>efficiency | Reference                        |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------|----------------------------|----------------------------------|
| UVA <sup>a</sup>                       | Escherichia coli                                                                                                        | TiO <sub>2</sub> -coated Pyrex tubular reactor                                 | 9–35 s (1.5–6l/<br>min)         | 99.1–99.8%                 | (Keller et al. 2005)             |
| UVA <sup>a</sup>                       | Escherichia coli                                                                                                        | Continuous annual reactor with TiO <sub>2</sub> -<br>coated glass fiber filter | 1.1 min (11/min)                | 100%                       | (Pal et al. 2008)                |
| UVA <sup>a</sup>                       | Legionella pneumophila                                                                                                  | Three-dimensional solid foam<br>structured reactor                             | 1.5 s (21.6l/min)               | 94%                        | (Josset et al.<br>2010)          |
| UVA <sup>a</sup>                       | Influenza virus H1N1                                                                                                    | TiO <sub>2</sub> -coated porous ceramic substrate                              | 5 min (6–24l/<br>min)           | 100%                       | (Daikoku et al.<br>2015)         |
| UVA <sup>a</sup>                       | Pseudomonas aeruginosa, Staphylococcus aureus,<br>Methicillin-resistant Staphylococcus aureus,<br>Aspergillus fumigatus | Honeycomb structure made of P25<br>dip-coated cellulose acetate<br>monoliths   | 15 min                          | 74–98%                     | (Rodrigues-Silva<br>et al. 2017) |
| UVA <sup>a</sup> ,<br>UVC <sup>b</sup> | Escherichia coli                                                                                                        | TiO <sub>2</sub> -coated glass fiber substrates                                | $\sim$ 0.5 s (20l/min)          | 95%                        | (Lin et al. 2010)                |
| UVA <sup>a</sup> ,<br>UVC <sup>b</sup> | Escherichia coli                                                                                                        | TiO <sub>2</sub> -coated filter                                                | 2–6 h                           | 100%                       | (Pigeot-Remy<br>et al. 2014)     |
| VUV <sup>c</sup>                       | MS2 phage                                                                                                               | Spiral and pleated Pd-deposited TiO <sub>2</sub><br>flow-through reactor       | 0.004–0.125 s<br>(33l/min)      | 47.8–100%                  | Present study                    |
|                                        |                                                                                                                         |                                                                                |                                 | ·                          | 7                                |

Table 1. Summary of studies on UV photocatalytic oxidation systems for disinfecting bioaerosols.

% a. UVA: 365 nm wavelength ultraviolet light.

b. UVC: 254 nm wavelength ultraviolet light.

c. VUV: 185 nm wavelength ultraviolet light.

# **End of Document**



#### For further contacts:

Email: info@airion.es

Phones: 91 664 53 50, Jorge 625 607 941, Carlos 609 25 93 77

www.airion.es

Madrid, Spain